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ABSTRACT

This work presents a hand model estimation method designed specif-
ically with augmented reality (AR) glasses and 3D AR interface in
mind. The proposed work is capable of estimating the 3D positions
of all ten finger from a single depth image. By leveraging a low-
dimensional hand model and exploiting hand geometries from an
ego-centric view, we build a lightweight algorithm that is accurate,
environment agnostic, and runs in real time on mobile hardware.
One major consideration in our design for AR is that the user‘s hand
is likely to interact with planar surfaces since they serve as ideal
touchscreens. As a result, our method will not fail to detect the hand
even when the hand is in physical contact with a surface such as a
table, wall, or even another palm. Our experiment shows using the
CVAR database that the accuracy with clear background at 98% and
with cluttered background at around 85%.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed/augmented real-
ity; Computing methodologies—Artificial intelligence—Computer
vision—Computer vision problems

1 INTRODUCTION

Hand model estimation via computer vision is important in human-
computer interaction and has been extensively studied [2, 11, 16].
However, it still remains a challenging problem, especially in the
context of augmented reality, due to several reasons:

• High Degrees of Freedom: The human hand is an articulated
deformable object with high degrees of freedom and complex
finger movements.

• Low-Latency: Using hand models as an input modality in
human-computer interface requires its estimation algorithms to
be fast and low-latency, preferably to match those of keyboard
and mouse input.

• Light Weight: Its particular usage in the emerging wearable
augmented reality (AR) field often limits the available comput-
ing hardware to be only lightweight and low-power.

• Robustness to Cluttered Background: If the hand input is
intended for mobile use, such as in vehicles or in factories, the
solutions must work well under complex lighting conditions
and cluttered background.

• Robustness to Touch/Tactile Feedback: In addition, we pre-
fer a solution that is robust to the hand contacting physical
surfaces since the most common utility of the human hand is
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touching physical surfaces in the world. Further, this provides
tactile feedback to the human user compared to no feedback
when performing gestures in mid air.

Despite recent advances in hand tracking, few solutions have been
tailored to augmented reality applications and can adequately fulfill
the above challenges. For example, much of the prior work has
been focused on tracking the user‘s hand from a third person camera
perspective with the assumption of little background interference
[10, 14]. Some systems also use highly complex hand models to
capture the hands motion which is very resource-intensive [8]. The
work in [1] use a polygon model optimization but require a GPU to
achieve real-time performance.

In this paper, we present a novel hand model estimation solution
tailored specifically for head-mounted augmented reality glasses.
First, in order for the solution to acquire accurate finger locations in
3D space under complex lighting conditions, we choose to use depth
images from active depth cameras as our input (e.g., Intel RealSense
and Microsoft Kinect).

Second, we employ a simpler hand model with 8 key points (five
fingers, one palm center, and two wrist positions). We find that
these 8 points are sufficient for most augmented reality applications.
While many other hand tracking solutions use a full skeletal model,
we have found that given the ego-centric vantage point, most of these
skeletal points are not observable and hence are approximated with
best guess generated based on probability. Most AR applications
that we care about only need to know the 3D locations of the hand
fingertips together with the palm, which are fully modeled and
tracked in our solution.

In the proposed algorithm, we only track the 8 key points through
a geometric parsing of the hand contour and a simple SVM model
for false positive rejection. Despite its simplicity, our experiment
shows that our hand tracking solution is very accurate and can be
implemented in real time under the constraints of augmented reality
use cases and hardware specifications.

Finally, our algorithm explicitly deals with modeling any dom-
inant surfaces that the hands may contact with. The additional
modeling of all possible contacting surfaces allows the application
to ignore the surface structure and track hand gestures that interact
with the physical surface. To this end, we have made our imple-
mentation of the algorithm available as an open source package
online.

2 RELATED WORKS

Glove and Markers: Marker-based systems rely on reflective
markers to be fixed to the hand directly or on gloves [12]. The 3D
position of the markers is then estimated using a multi-camera setup
which infers a full skeletal pose based on inverse kinematics. These
methods require expensive and specialized hardware.

Multiple Views: Multiple cameras provide a means to over-
come errors from various forms of occlusions. The work in [13]
creates hand tracking from two cameras using a discriminative ap-
proach to quickly find the closest pose in a predefined database. [7]
used 8 cameras in a studio setup to tracking both hands manipulating



an object. However, these methods are not feasible within the
hardware constraints of augmented reality. The head-mounted
display must small and light. It is difficult to create two cameras
that observe very different viewpoints on this type of form factor.

Single Depth Camera: The introduction of off-the-shelf
depth sensors has led to an explosion of hand tracking methods that
utilize depth information. [5] proposed a method for tracking hands
directly in depth by physics simulation. [9] uses a multi-layered
discriminative reinitialize strategy for per-frame pose estimation
followed by a generative model fitting to recover the hand pose.

Random forests are widely used in full body tracking and a
number of hand tracking methods adopt a similar strategy. [4]
proposed a method of finger gestures from a monocular depth
camera by training a decision forest. [3, 15] proposed supervised
learning methods to regress over 3D hand poses. However, the
problem with these methods that they require a large amount of
training data and it is unclear how well they will perform for new
users that may be out of distribution with the training data.

Commercial Products: In parallel, practitioners can adopt
several hand tracking systems available in the market. Products
such as Leap Motion and uSens Fingo leverages a similar approach
in that they use a single active depth sensor. These products uses
fully articulated skeletal hand and provide outstanding accuracy.
However, they require the end user to purchase specialized hardware
(instead of a generic depth camera). Further, the Leap Motion and
uSens Fingo will both lose track if the hand physically contacts a
surface.

Products such as the Oculus Touch and the HTC Vive Wand adopt
the glove and markers approach. These systems have the lowest
latency and highest accuracy. However, both rely on hand held
devices and external sensors.

Finally, the Hololens and Hololens2 hand tracking functions are
most similar to our solution, designed from the ground up for wear-
able AR devices. However, the functions will lose track of the hand
if it contacts a surface. Furthermore, the implementations run on
specially designed accelerated hardware, while our solution is an
open-source software kit.

3 METHOD

Two major goals of our algorithm is to support interaction with
virtual buttons augmented on physical surfaces and provide low
latency on mobile hardware without sacrificing accuracy. To achieve
this, we leverage modern depth sensors such as the Intel Realsense
SR300. We construct a low-dimensional representation of the hand
consisting of 8 key points rather than the traditional full skeletal
model. We assume an ego-centric view which allows us to quickly
eliminate unrealistic hand postures via simple rules and a lightweight
SVM. Our method leverages simple geometric algorithms rather than
kinematic model simulations or quadratic optimizations to reduce
computation while maintaining high performance. An overview of
the pipeline is shown in Figure 1.

The architecture of the algorithm is divided into three main stages:
hand extraction, false positive rejection, and finger classification.
During the hand extraction stage, we remove all background in-
terference and extract all blobs that can be the hand. In the false
positive rejection stage, we determine which candidate blobs can
be the hand blob(s) using a lightweight SVM classifier trained on
a small collection of manually engineered features. Finally, in the
finger classification stage, we identify all 3D finger positions in the
frame.

3.1 Background Subtraction

In order to track a hand that is in physical contact with a surface, we
start by modeling all the planar surfaces in the scene.

Figure 1: High level overview of our pipeline. We start with a raw
depth image and classify fingers by their 3D positions.

Figure 2: Pipeline to extract the hand cluster from background noise.
We first removal all planar surfaces which the hand might contact with.
Next, we remove all background noise and clutter.

Since we have access to an ordered point cloud, we choose to
fit planes through region growing of similar normal vectors under
cosine similarity on the depth image. We first compute the normal
vector at each point by taking the cross product of two vectors each
determined as an average of four neighbors. Next, we aggregate
points with similar normal vectors to grow the plane. Finally, we
fit a plane equation to all points with similar normal vectors using
ordinary least squares. We find that region growing is a much faster
and more reliable approach than RANSAC when an ordered point
cloud is present yet the number of planes present is unknown.

Using the detected plane models, content creators can augment
virtual buttons directly on top of these planar surfaces. When the
user interacts with these buttons, the table top or wall surface will
provide natural tactile feedback.

3.2 Hand Extraction

As shown in Figure 2. we first remove all the planes in the depth
image. Otherwise, the hand cluster can merge with the planar surface
if they are in contact. Next, we flood fill from the bottom of the
frame to extract all possible hand blobs. Since we specially designed
this solution for head-mounted devices, we assume an egocentric
view which means the users wrist must intersect with a line near
the bottom of the depth camera frame. This assumption allows the
system to quickly discard all clusters (including other users hands)
that are not near to the bottom edge. We iterate through voxels near
the bottom of the frame and use a watershed floodfill to identify all
clusters whose areas are between 0.01m2 and 0.02m2. Clusters that
are not within this size range are discarded since they are unlikely to
represent a hand.

From the cluster we compute the contour. The remaining compu-
tations are performed on the contour for reduced computation.

3.3 False Positive Rejection

In this stage of the pipeline, we use an SVM to rapidly classify
the likelihood each detected contour is a hand. To be more precise,
we use a Support Vector Regressor (SVR) that produces a confi-
dence score for the classification, allowing for finer thresholding.
Traditionally, false positive rejection is performed at the end of the
pipeline when potential fingers are identified. However, computing
finger positions is a relatively resource-intensive task. To maximize
performance, we choose to perform false positive rejection early in
the pipeline with features that are easily computed from the depth
image to avoid performing finger detection on contours that are not



Figure 3: Visualization of the 48 SVM features for the open hand

the hand. The SVM utilizes 48 features (Figure 3) computed as
follows:

1. Enforce Rotation and Translation Invariance: To make the
algorithm rotation and translation-invariant, we transform the
cluster’s contour so that the palm center is at position zero and
the dominant direction is up in the image space. We define the
rough palm center to be the center of the largest inscribed circle
within the hand’s contour. This is determined by computing the
Voronoi diagram of the contour, which is first downsampled
to improve performance, and then iteratively checking each
vertex inside the contour to find the one furthest from the
contour.

We simply define the dominant direction to be the vector from
the palm center to the contour point farthest from the palm
center.

2. Find 48 Key Points: We cast rays from the palm center in 48
directions on the 2D plane, starting with the “up” direction
and with adjacent rays separated by 7.5 degrees. We select
the nearest contour point to each ray as the corresponding
keypoint.

3. Create Features: We compute the 3D Euclidean distance from
the palm center to each key point computed by referring to
the corresponding positions on the depth map. Please note
that each pixel in the depth map has its corresponding 3D
coordinates, when the camera is calibrated. The 48 distances
obtained are organized into a feature vector.

We then can train an SVM with an RBF kernel on 18,880 real
images manually labelled as either hand or non-hand. SVM is
the preferred model for two reasons. First, the training data are
of relatively low dimension and non-hand clusters are expected
to be separable from hand clusters. Secondly, SVMs also have
the advantage of running quickly and using very little computing
resources.

3.4 Wrist Detection

To approximate the wrist positions, first we find the left-most and
right-most points in the contour that intersect the bottom of the
frame. If such points do not exist, we use the bottom-most (highest
y-coordinate) point on the contour. We then move along the contour
from each point in opposite directions until we first reach a prede-
fined distance from the palm center. We call the nearest contour
points the wrist keypoints.

Figure 4: Our pipeline for classifying finger tips on the hand cluster
is three step process. In the first step, we refine the contour with a
median filter it to avoid noisy points on the edge of objects. In the
second step, we approximate positions where finger tips might occur.
The the third step, we use a series of hand engineered features to
refine the previous approximates and prune false positives.

Figure 5: Keypoints used for finger classification. D1, D2, and D3 are
computed from defects in the convex hull. P is the center of the palm.
C1, C2, C3, and C4 are nearby points to the defect start and end.

3.5 Finger Detection

Given a contour, the role of the finger detector is to classify which
points on the contour are fingertips (Figure 4). However, the Intel
Realsense SR300, like most depth sensors, have higher noise around
object edges. To compensate, for each contour point, we apply a
5 pixel median filter to obtain values from the less noisy interior
points.

Next, we compute the convex hull and find the defects in the
convex hull. Each defect is defined by three points, D1, D2, D3 (in
Figure 7). For each defect, we add D1 and D3 to the list of potential
fingers.

3.6 Heuristics

For each candidate finger point, we extract 8 key points (Figure 5).
D1, D2, and D3 are the points computed from defects in the convex
hull. P is the center of the palm. C1, C2, C3, and C4 are nearby
points to the defect start and end. From these key point we generate
6 features which is used to determine whether a candidate point is a
fingertip.

• Finger Length: Distance between D1 and D2.

• Distance between defect to palm: Distance between D2 and
P.

• Slope of Finger and nearest defect: Slope of the line be-
tween D1 and D2.

• Slope of finger and palm center: Slope of the line between
D1 and P.

• Local curvature: the curvature of the contour between C1,
D3, and C2.

• Non-local curvature: the curvature of the contour between
C3, D3, and C4, to contrast with local curvature.



Figure 6: Finger classification under various hand poses, background
interference, and false positive interference.

Each of the feature is thresholded against values that are tunable by
the end user. The default values are picked based on the average
observed measurements from the CVAR dataset [6].

3.7 One Finger Special Case

One of the most challenging poses is one finger since there is likely
no defect in the convex hull and the overall shape does not look
like a hand. We construct a pipeline to specifically handle this case
since one finger gesture is very common in AR. To check for one
finger poses, we first record the farthest point (p1) on the convex
hull and points 0.05 meters around it. We then compute the local and
non-local curvature around that point. We threshold the curvature to
determine if it is sharp enough assuming the average finger width is
between 1.5cm - 2.1cm. If the curvature is sharp enough, a candidate
region is added and classified as above.

3.8 Limitations

Our algorithm being lightweight and real time has certain limitations.
First, our hand model only contains finger tips and the palm. Thus,
we do not directly capture the positions of other hand joints and
cannot support hand interaction that requires precise estimation for
those joints. Second, if the finger tips are occluded, we do not have
a hidden model to estimate their locations. The hidden finger tips
are being track with their last known position. Finally, our algorithm
will lose track if the hand interacts with complex non-planar shapes
in the real world.

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We evaluate the results on the CVAR hand dataset. The dataset
contains 2800 unique hand poses captured from an egocentric per-
spective. CVAR dataset has folders named P1, P3, P4, P5, P6, and
P7. P3 folder includes two hands. However only the 21 joints in-
formation for the right hand is given. In the modified dataset, we
provide the algorithm with only the depth image for the right hand
by masking the left hand. Further, we only evaluate on fingertip
locations directly visible to the camera. CVAR dataset images are
of the resolution 320*240 pixels. The depth images for the CVAR
dataset collected from a Creative Senz3D camera.

4.2 Accuracy

To evaluate our algorithm, we compute the 3D Euclidean distance
between the ground truth finger tip positions and the predicted po-
sition. A prediction is considered correct if the distance between

Figure 7: Finger detection when hand is in contact with surface. The
value in the center of the hand is the SVM confidence.

Table 1: Finger Classification Accuracy

Dataset P1 P2 P3 P4 P5 P6 P7

Accuracy (%) 98.7 95.7 94.1 93.8 94.2 86.2 84.1

the predicted position and the ground truth is less than 1.5 cm. In
Table 1, we list the accuracy of our system evaluated on the various
portions of the CVAR dataset.

P1 contains clean hand data without any occlusion and we per-
form the best on that dataset. P2 - P5 contain various levels of
background clutter. P6 and P7 contain samples where the hand
interacts with non-planar objects that is not part of our initial con-
sideration. However, our algorithm still can achieve reasonable
accuracy on those datasets. Figures 6 and 7 show several realistic
examples of our algorithm performance.

4.3 Performance

We evaluate our algorithm on an Intel i5-9600k and an Intel i3-
8350k CPU with an Intel Realsense SR300 depth camera (Table 2).
Currently, our implementation of the algorithm has not utilized a
GPU. The performance is tested under three configurations and the
FPS achieved by the algorithm are averaged. The speed results show
that, even in the most cluttered of scenes, the algorithm is able to
attain real-time performance above 30 FPS.

5 CONCLUSION

We have proposed a hand tracking algorithm to fit the specific needs
of AR glasses. The core requirement is to design an algorithm that
is accurate, environment agnostic, and can achieve real time perfor-
mance on mobile hardware. We started with a low-dimensional 8
point model rather than the traditional full skeletal model. Through-
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out our pipeline, we heavily rely on hand engineered features and
geometry rather than quadratic optimization or large learned models.
We are able to achieve high accuracy and real time performance on
a single ego-centric depth image.
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