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Slides available: 
vivecenter.berkeley.edu 
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Princess Leia’s Hologram:
First asynchronous telepresence



Multi-User Interaction Demo: 
Microsoft Holoportation



Multi-User AR Applications: 
Model, Share, Manipulate
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Office Hospital

Living Room



3D Modeling for Personal AR Products

• Infer 3D using minimal 
number of images

• Accurate dense 
reconstruction for virtual 
augmentation

• Complete without holes

• Sharable and editable space 
models for multi-users

• Augmentation of human 
users as realistic avatars

• **Privacy and standards



Solutions for Future AR Experience

1. Modeling 
Background 
Layout

2. Modeling 
Foreground 
Objects

3. Modeling 
User Avatars

4. Optimization 
& Sharing  in 
Mutual Space



Outline of the OpenARK Tutorial

• Session I: Contexture 3D Scene and Avatar Modeling

• Session II: 3D Reconstruction, SLAM, and Gesture 
Recognition

• Session III: Maximization and Manipulation of 
Contextual Mutual Space Models



Traditional 3D Vision — 
“Building Rome on a (cloudless) day”

* Jan-Michael Frahm, et al.  2010



Pros and Cons of SfM

Pros	

•  Widely	available	hardware	

	

•  Unlimited	range	

•  Uniform	noise	model	(Gaussian)	

•  Retain	surface	texture	

	

Cons	

•  Computationally	intensive	to	

recover	3D	depth	

	

•  Doesn’t	work	in	dark	

•  Doesn’t	work	when	lack	of	

texture	

•  Lead	to	only	sparse	geometry	

vs.	dense	3D	map	



Anatomy of an AR platform



Using Depth Camera to Scan Spaces



Depth Cameras



Depth from Single Camera
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Depth from Stereo vs Time of Flight
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Depth from Stereo vs Time of Flight
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Basic ToF Principles

https://en.wikipedia.org/wiki/Time-of-flight_camera

Limitation:	t_D	must	be	smaller	than	t



Spatial Structured Light Approach

Projector

Camera



Disparity from calibrated patterns

• Assume	a	reference	disparity	

Projector Camera

• Compute	



Pros and Cons of (most) Depth Cameras

Pros	

• Computationally	simpler	(using	

light	reflection	and	look-up	

tables)	

• Work	in	the	dark	

• Work	on	texture-less	surfaces	

• Full	dense	3D	map	for	AR/VR

Cons	

• Light	emitter	may	consumer	

more	power	

• Challenge	with	sunlight	

• Uneven	noise	model	in	depth	

• Cost	more	to	manufacture	

emitter	and	sensor



Available RGB-D Databases

• Indoor LIDAR-RGBD Scan: 5 models

• Matterport 3D: 90 scenes

• ScanNet (Structure): 707 spaces

• Gibson (Matterport): 572 buildings

• ShapeNet (CAD): 51,300 models

• PanoContext (panoramic): 700 
Panoramas



Berkeley ATLAS
— Multi-resolution database for geometric super 
resolution
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• Cross-reference ground-truth LIDAR data with 
consumer-grade depth camera data (RealSense) 
for one-to-one correspondences

• PX-80 LIDAR (construction grade)

• RealSense D435i (consumer grade)

• PointGrey stereo cameras

• Technical challenges

• Multi-sensor synchronization (Arduino)

• Multi-sensor calibration (manually)

• Multi-sensor SLAM (OpenARK)

• 3D labeling (Python CV toolkit)
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A CV-assisted 3D labeling system

• Background room 
surfaces are first 
separated by 
clicking 3 points to 
define a surface

• Foreground objects 
are automatically 
bounded. We then 
label their categories

• Establish 
correspondence 
between LIDAR, 
RealSense, and 
images



Bottleneck in 3D Objects via Point 
Cloud

• Usually obtain an incomplete model of 
objects from RGB-D sensors.

• Due to noise, occlusions, or material 
properties

• Task: Complete the 3D objects for 
accurate virtual augmentation



Approach: Deformable CAD Models

• Propose to use deformable 
CAD model

• Match observation (data) while 
being geometrically complete

• Also solve for optimal scale and 
rigid body transformation in 
addition



ShapeNet CAD Models

• ShapeNet [ Chang et al. arXiv 
2015] is a richly annotated 
large scale dataset of 3D 
shapes.

• Models are normalized to unit 
cube, so need to be scaled and 
rigidly transformed.

• Provides annotations for:

• upright, front direction

• parts information

• Symmetry etc. 



3D Shape Completion
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h
min

h
| f(h) − x |f(h)

latent 

variable

x

• Auto-encoder network to estimate latent representation of the 
deformed CAD model space, which minimizes approximation 
error

* Achlioptas, Panos, et al. "Learning representations and generative models for 3D point 

clouds." arXiv preprint arXiv:1707.02392, 2017.



Approach I: Auto-Encoder (AE)

• Estimation error created via point clouds
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Original CAD Object Point Cloud Deformed CAD

+



• Point Cloud: an object is sampled by N 3D points

S is an N-by-3 matrix

• Challenges with point clouds

1. Point Cloud sample are ambiguous and not unique

2. A set of 3D points are not ordered (compared to 
images and videos)
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AE Representation for 3D Point Clouds



Auto-Encoder (AE) Objective

• A deep-learning architecture that learns to reproduce its input 
with most informative representation

• h is called the latent code for representing a family of input 
data

• Goal: Minimize reconstruction error
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Applications of AE on Point Cloud

• Changing appearance

• Point-cloud completion

• Classification based on h (when trained on all categories)
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* Achlioptas, Panos, et al. "Learning representations and generative models for 3D point 

clouds." arXiv preprint arXiv:1707.02392, 2017.



Drawback from AE Representation in 
Dense Shape Completion
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• Resulting point cloud minimizes the 
estimation error

• However, deformed mesh model 
may not be contextually plausible 
or visually appealing

• Generation of new shape is only 
related to the decoder part, but not 
the encoder



Approach II

• Auto-Decoder Network

• Continuous signed distance function
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z f(x, z)

latent 

variable

min
z ∑

x

| f(x, z) − y |

[2] Park, Jeong Joon, et al. “DeepSDF” CVPR, 2019.



Signed Distance Function

• SDF with respect to a set 

where  is the boundary of the set

• SDF is a continuous function

• Magnitude of  is always unit (1)

• On the boundary,  is equal to the normal vector

Ω

f(x) = {
−d(x, ∂Ω) if x ∈ Ω

d(x, ∂Ω) if x ∈ Ω
c

∂Ω

∇f(x)

∇f(x)
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Auto-Decoder (AD) Network

• Auto-Decoder Network

• How to inference optimal code 

• Training: assume each code  corresponds to 

one shape

• Testing: 

{z1, …, zN}
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[2] Park, Jeong Joon, et al. “DeepSDF” CVPR, 2019.

h
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Shape Completion

• Shape Completion Problem under AD Network

 

Finding the optimal  given trained shape parameters  and 

partial observations 

•  The network can approximate any number of points, un-
ordered.

• (x, y, z) can be any 3D point, so AD encodes continuous SDF.

• No encoder part is needed, therefore the main motivation to 
ignore during training.

z* θ

{x1, …, xK}



Results with Improvements (ongoing)
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3D Avatar Modeling
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Skeletal Fully Articulated Deformable 



3D Avatar Modeling
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Deformable 

1. Photo-realistic video games

2. Social media

3. Telepresence

4. Human simulations



Existing Literature: 
Single-Camera Avatar Modeling

• Template-based: Using body skeleton/silhouette

• Vlasic et al., 2008

• Taylor et al., 2012

• OpenPose: Zhe Cao, et al, 2018

• Model-based: SMPL, SCAPE, …

• BodyFusion: T. Yu, et al., 2017

• DoubleFusion: Tao Yu, et al., 2018

• Delta: Federica Bogo, et al., 2015

• Free form: Static vs Dynamic

• KinectFusion: ISMAR 2011

• DynamicFusion: CVPR 2015
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Our Approach

Low Dimensional 

Model
Increasing robustness 
and speed by working 
in a low-dimensional 

space.

Fast Solver
Towards high 

performance on low-
compute devices.

Model Fusion
Combining 3D 

Depth + 2D RGB 
information for  

enhanced realism 
and robust tracking.



OpenARK Avatar Open-Source Library
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Fusion of Multiple 3D Cues
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ICP Error

Physical model

Joint Prior

Neural network model

Pose Prior

Probabilistic model 

based on human 

knowledge



Observed Point

Nearest neighbor 

on SMPL model 

to observed point

Iterative Closest Point (ICP) Error
Sum squared distance from observed body to modeled body 



Joint Position 

Predicted by 

Neural Net

Joint Position on 

SMPL Model

Joint Prior

Sum squared distance from CNN joint positions to model 

joint positions 



PDF 

Parameterized by 

Joint Pose

Weights Trained 

from CMU MoCap 

Dataset

Pose Prior

Likelihood of modeled pose being real human pose



OpenPose as skeleton anchor
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* Zhe Cao, et al. OpenPose: Realtime multi-person 2D pose estimation using part 

affinity fields, 2018



Fit Pose

Fit Pose

New Frame

ICP Sanity 

Check

Basic Process

GitHub: https://github.com/augcog/OpenARK


