
PID and beyond
Control Approaches for Autonomous Racing

Mike Estrada

https://docs.google.com/file/d/1f6BB35OWd4Qrgwz83HGc7kFHxGP2m6Fb/preview

Setup

Architecture

NVIDIA Jetson
Nano

Intel RealSense
D435i

Arduino Nano

Traxxas XL-5
Electronic Speed

Controller

FL Wheel
Encoder

FR Wheel
Encoder

RR Wheel
Encoder

RL Wheel
Encoder

HARDWARE SOFTWARE
Image Data from

RealSense

LQR Controller

Traction
Controller

Wheel Speeds MotorPWM

ESC

SteeringPWM

MotorPWM

imgData

vFL,vFR,vRL,vRR

vFL,vFR,vRL,vRR

Wheel Encoders
● Designed, prototyped custom encoders for

independent measurement of wheel velocity

● Encoders use a line sensor triggered by
change from black to white on encoder disk

● Independent wheel velocities
calculated by Arduino Nano

● Velocities communicated to
Jetson via serial port

Encoder sensor

Encoder disk

Wheel Encoders

Encoder sensor

Encoder disk

Lane Tracking

Step 1: Set the threshold in HSV
space to get the red part in the
video

Step 2: Get the lane by
finding the largest
connected component

Step 3: Find the three way
points on the Lane by
averaging the coordinates
with certain y-value

Lane Tracking

Lane Tracking

https://docs.google.com/file/d/1zta6VB0kNKH4asibafyi9YUhGxYFyZeJ/preview

Simplified Bicycle Model

● Waypoints give x and y coordinates along the
track relative to the car

● Radii of turns are calculated to determine a
relative inertial heading (𝜓)

State Estimation

State Estimation

Calculating world coordinates from pixel coordinates
● From the RealSense camera, we have access to the intrinsic matrix for the camera
● Solve for [X Y Z], Z (depth) given by camera

The first iteration for our lane following controller was a “Smart” PID Controller:

● Constant straight line velocity

● Tries to control the x position of the furthest waypoint to be 0 (inline with car)

● Increasing radius lowers velocity

“Smart” PID Controller

e

 PID Car

 RealSense
y

r e u y
+-

MPC controller w/dLQR
● Initially solved MPC problem with dLQR using Ricatti equation

● Inclusion of CBF requires constrained optimization

● Converted standard dLQR with state tracking into QP form

Reachable Set for 12 cm radius cylinder
Using code from Sylvia Herbert in Claire Tomlin’s Lab

Control Barrier Function
Visualization of Level sets
Using code from David McPherson

https://docs.google.com/file/d/127GRMU_nW2BGOKVvGJ_0vgD4Bj23u-bw/preview

Step 1: Start with Realsense
Camera depth data. Image
colorized for visualization
purposes

Obstacle Detection

Step 2: Perform image
segmentation based on the
distance from objects to the
camera

Step 3: Find contours and
bounding boxes of all objects
(white areas in step 2) after
filtering by object position,
size, distance, and object
height

Obstacle Detection

Obstacle Detection

https://docs.google.com/file/d/1zmZW9qI4d5nWHwT2TiZR-uo_V-q8ru3l/preview

Appendix

Build an autonomous Traxxas RC car capable of navigating a track at high
speed by

1. Using computer vision to detect lane markers and obstacles
2. Implementing an MPC controller and control barrier function (CBF) to

follow the track and avoid obstacles
3. Implementing a traction control algorithm to maximize vehicle traction

and acceleration

Goals

Wheel Encoders
● Designed, prototyped custom encoders for

independent measurement of wheel velocity

● Encoders use a line sensor triggered by
change from black to white on encoder disk

● Independent wheel velocities
calculated by Arduino Nano

● Velocities communicated to
Jetson via serial port

Encoder sensor

Encoder disk

Wheel Encoders

Encoder sensor

Encoder disk

Lane Tracking - Initial Method

Step1: Set the threshold in
HSV space to get the red part
(Followed by extra image
processing)

Step2: Extract the edge of
lane using a canny edge
detection

Step3: Detect two edges
of the lane (thin red lines),
get the middle line (the
bold white line), select
three points on it.

Lane Tracking
Video for Initial Method

https://docs.google.com/file/d/1lFk_8DG1OKFbfuxz85C4kKOoT3B7IETX/preview

Lane Tracking
● Existing Problems in Initial Method:

○ Easy to be influenced by noisy pixels
○ Two edges of the lane are not accurate, the point might shift out of the

lane

Video in RBG

Lane Tracking
Video showing processed img

https://docs.google.com/file/d/1jHjse4QHeBH1ZDyVELqLVjsfgAd1FcEb/preview
https://docs.google.com/file/d/1EpOPipOLPDKLBHZpzSUXwf1ahf3mvid2/preview

Video in RBG

Lane Tracking
Video showing processed img

https://docs.google.com/file/d/1VsUSBAbs_LCP5TBeUTw4dO-HyavfB6WY/preview

LQR Controller: Tuning
Simulated LQR Controller on a Simplified Bicycle Model

Unachievable Inputs
on Real Car

Long Time to Achieve Goal

Chosen Q and R Values
Considering Input Thresholds

Reachable Set for 12 cm radius cylinder
Using code from Sylvia Herbert in Claire Tomlin’s Lab

Control Barrier Function
Visualization of Level sets
Using code from David McPherson

https://docs.google.com/file/d/127GRMU_nW2BGOKVvGJ_0vgD4Bj23u-bw/preview

Control Barrier Function
Safe Control Path Safe Path/LQR Hybrid Controller

*Plots adapted from David McPherson’s code

Traction Control

No traction control: example of wheel slip

https://docs.google.com/file/d/1Npw3HFhAcBQyDwYyBB3jv5_4fp8II12X/preview

Traction Control
● Constant throttle

PWM value sent to
ESC

● Front wheel velocity
and rear wheel
velocities recorded

Initial front velocity
higher (wheel slipping
at front due to tape)

Throttle down as
controller aims to

achieve slip ratio of 0.1
(and match front and

rear speeds)

Error in rear
velocity encoder

readings

Front and rear
velocities converge

